#### **Solar Working Group**

#### **Solar Sub-Group Updates**

Julie Baldwin, Kevin Krause, Jesse J. Harlow Michigan Public Service Commission May 20, 2014



## Value of Solar

- VOS Examples
  - Austin Energy
  - Minnesota PUC
  - 5 Lakes Energy



# Austin Energy 2014 VOS Buy All – Sell All

| Guaranteed Fuel Value        |
|------------------------------|
| Plant O&M Value              |
| Gen. Capacity Value          |
| Avoided Trans. Capacity Cost |
| Avoided Dist. Capacity Cost  |
| Avoided Environmental Cost   |

|   | Economic<br>Value | Load Match<br>(No Losses) | Distributed<br>Loss<br>Savings | Distributed PV<br>Value |
|---|-------------------|---------------------------|--------------------------------|-------------------------|
|   | (\$/kWh)          | (%)                       | (%)                            | (\$/kWh)                |
|   | \$0.053           |                           | 4%                             | \$0.055                 |
|   | \$0.005           |                           | 4%                             | \$0.005                 |
|   | \$0.026           | 62%                       | 6%                             | \$0.017                 |
|   | \$0.015           | 62%                       | 6%                             | \$0.010                 |
|   | \$0.000           | 39%                       | 7%                             | \$0.000                 |
|   | \$0.020           | _                         | 0%                             | \$0.020                 |
| _ | \$0.119           |                           |                                | \$0.107                 |

Previous VOS was between 12 and 13 cents per kWh.



# Minnesota PUC Example VOS Buy All – Sell All

Figure 3. (EXAMPLE) VOS Levelized Calculation Chart (Required).

#### 25 Year Levelized Value

Avoided Fuel Cost
Avoided Plant O&M - Fixed
Avoided Plant O&M - Variable
Avoided Gen Capacity Cost
Avoided Reserve Capacity Cost
Avoided Trans. Capacity Cost
Avoided Dist. Capacity Cost
Avoided Environmental Cost
Avoided Voltage Control Cost
Solar Integration Cost

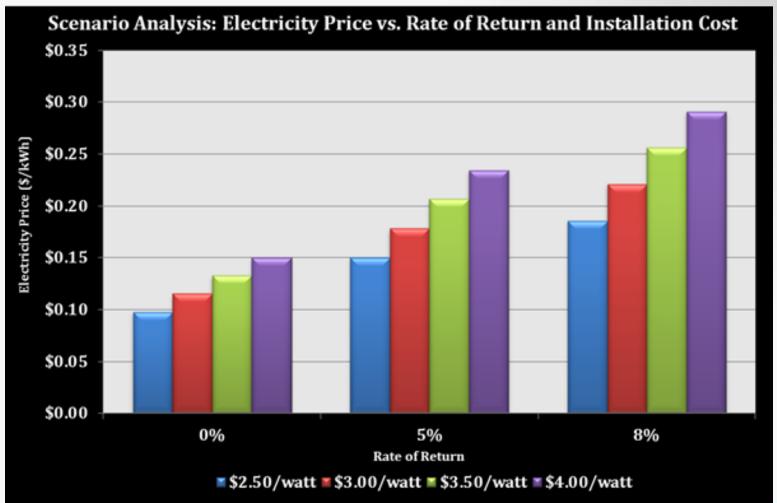
| Gross Starting × Value | Load Match<br>Factor | × (1+ | Loss<br>Savings<br>Factor | ) = | Distributed<br>PV Value |
|------------------------|----------------------|-------|---------------------------|-----|-------------------------|
| (\$/kWh)               | (%)                  |       | (%)                       |     | (\$/kWh)                |
| \$0.061                |                      |       | 8%                        |     | \$0.066                 |
| \$0.003                | 40%                  |       | 9%                        |     | \$0.001                 |
| \$0.001                |                      |       | 8%                        |     | \$0.001                 |
| \$0.048                | 40%                  |       | 9%                        |     | \$0.021                 |
| \$0.007                | 40%                  |       | 9%                        |     | \$0.003                 |
| \$0.018                | 40%                  |       | 9%                        |     | \$0.008                 |
| \$0.008                | 30%                  |       | 5%                        |     | \$0.003                 |
| \$0.029                |                      |       | 8%                        |     | \$0.031                 |
|                        |                      |       |                           |     |                         |
|                        |                      |       |                           |     |                         |
|                        |                      |       |                           |     | ĆO 125                  |

\$0.135



## 5 Lakes Energy

- Bill Credit
- Dynamic Rate to Value Power
- Buy-net, Sell-net One-way Delivery Charge
- Renewable Energy Credits
- Externality Payments




# Value of Solar Contested Case Proceeding

- Utility Value of Solar filing
  - PSCR (annual filing)
  - RE Plan (every 2 years or when plan is amended)
- VOS consultant to assist MPSC Staff
- Complex VOS study with 25 30 year forecasted LMPs and capacity data



## Residential Solar Model





# Next Steps (from last time)

- Program Caps
- Analyzing impact of various program sizes on PSCR, Base Rates, or Renewable Energy Surcharge



#### One possible program design



- Blocks of capacity with declining price schedule
- Blocks fill on "first-come, first-served" basis
- Could be structured as rebate or PBI "sweetener" to existing net metering program.

|           | 1      | 2      | 3      | 4      | 5      |
|-----------|--------|--------|--------|--------|--------|
| Small     | X MW   |
| < 20 kW   | \$0.0X | \$0.0X | \$0.0X | \$0.0X | \$0.0X |
| Large     | X MW   |
| 20-500 kW | \$0.0X | \$0.0X | \$0.0X | \$0.0X | \$0.0X |

Protecting the Midwest's Environment and Natural Heritage

12



## One Scenario – Part 1

| Block               | 1     | 2     | 3      | 4      | 5      |
|---------------------|-------|-------|--------|--------|--------|
|                     |       |       |        |        |        |
| VOS in cents/kWh    | 10    | 10    | 10     | 10     | 10     |
| REC price in \$/MWh |       |       |        |        |        |
| (floor)             | 10    | 5     | 4      | 3      | 2      |
|                     |       |       |        |        |        |
| RECs in cents/kWh   | 3.14  | 1.57  | 1.256  | 0.942  | 0.628  |
| Total payment in    |       |       |        |        |        |
| cents/kWh           | 13.14 | 11.57 | 11.256 | 10.942 | 10.628 |

Assumes 3.14 multiplier for on-peak solar Propose REC price be fixed through 2029



## One Scenario – Part 2

| Small <20kW         |        |        |        |        |        |
|---------------------|--------|--------|--------|--------|--------|
| Block size in MW    | 2.5    | 2.5    | 2.5    | 2.5    | 2.5    |
| Potential customers | >125   | >125   | >125   | >125   | >125   |
|                     |        |        |        |        |        |
| Large 20-500kW      |        |        |        |        |        |
| Block size in MW    | 7.5    | 7.5    | 7.5    | 7.5    | 7.5    |
| Potential customers | 15-375 | 15-375 | 15-375 | 15-375 | 15-375 |

Total size of 50MW for each utility



# Recovery for this Scenario

- Total \$104 Million (through 2029)
  - Assumes all blocks full and delivering 1/1/2015
- Using current transfer price methodology
  - \$38 million Act 295, \$66 million PSCR
- RECs through Act 295, VOS through PSCR
  - \$14 million Act 295, \$90 million PSCR



#### **Recent Tasks:**

- Community Company-Owned Program Economics
- Third Party Model
- Community Solar Program Details



- Community Company-Owned Program Economics
  - Model under review
- Third Party Model
  - MN and CO models



#### **Locational Requirements**

- Should there be a proximity requirement
  - Utility's service area
  - County/City
  - Certain perimeter, i.e. 10 mile radius, 20 mile radius, etc.

#### Consensus

Utilities service area



#### **Customer Share Requirements/Limits**

- Maximum size limits
  - Limit each customer to net metering rules
  - Should each customer be allowed to subscribe at 110% or 120% to cover entire bill
  - Limit percentage of the program subscription any one customer can own/lease
  - Should there be a maximum third-party project size?
- Minimum requirements
- Should there be a minimum size for each subscription
- Should there be a minimum third party project size?

#### Consensus

- Net metering Limits OK, exceeding this would be great
- 40% max ownership
- 1 kW or one panel minimum
- Let the market determine the third party size



#### **Customer Contract Term Requirements**

- Should customers be allowed to enter and exit at any time?
- Should customers be required to sign long term contracts?

#### Consensus

 Should be some minimum time frame and at least a year contract for administrative efficiency



#### **Build Requirements**

- Postpone build until subscription queue reaches a certain point?
  - What point should this be?

#### Consensus

 80-100% for Utility-owned and for third party projects they can determine the necessary pre-subscription and risk.



#### **Utility Payments**

- What should utilities pay for community solar?
  - Value of Solar
  - RFP offerings?

#### Consensus

• 3

